

Grid @ DESY

15.12.2008

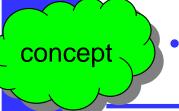
Legacy ...

... Legacy

Andreas Gellrich, DESY

HGF, 15.12.2008

History


- Trivially, computing requirements must always be related to the technical abilities at a certain time ...
- Until not long ago: (at least in HEP ...)
 - Computing was a pure offline task:
 "Let's first take data and then see how we handle them."
 - Necessary resources could be provided *locally*
 - In HEP, people have always been used to *global* approaches
- Nowadays: (LHC, ILC, ...)
 - Computing is treated like a detector component
 - Necessary resources cannot be provided locally anymore
 - Larger amounts of resources are not provided locally
 - The paradigm changed from local to global

Grid Computing

Grid Computing is about *virtualization* of *global* resources.

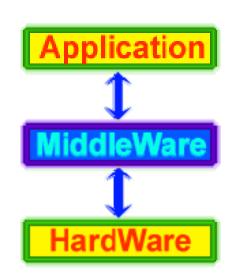
- It is about transparent access to globally distributed resources such as data and compute cycles
- A Grid infrastructure consists of services to access resources and (of course) of the resources itself
 - Opposite to distributed computing, Grid resources are not centrally controlled
 - Hence it is mandatory to use standard, open, general-purpose protocols and interfaces
 - > A Grid must deliver nontrivial qualities of services

In general Grid infrastructures are *generic*; without any dependencies of the applications / experiments

Grid Types

- Data Grids:
 - Provisioning of transparent access to data which can be physically distributed within *Virtual Organizations* (VO)
- Computational Grids:
 - allow for large-scale compute resource sharing within Virtual Organizations (VO)
- (Information Grids):
 - Provisioning of information and data exchange, using well defined standards and web services

Jobs are transient, data is persistent.

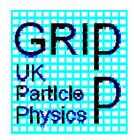

Grid Building Blocks ...

concept

A Virtual Organization (VO) is a dynamic collection of individuals, institutions, and resources which is defined by certain sharing rules.

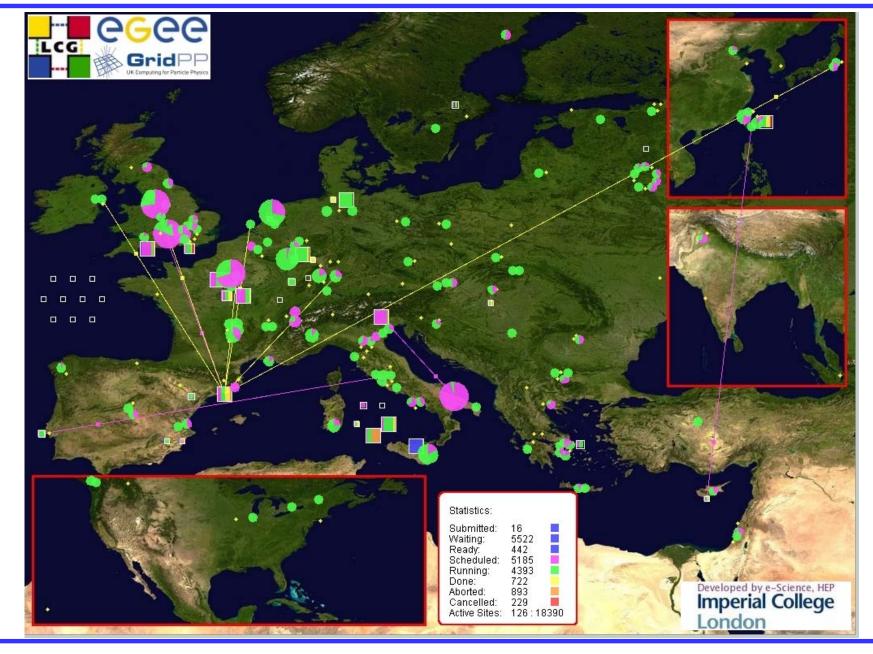
- > A VO represents a collaboration
- Users authenticate with personal certificates (Authentication)
- Users are members of a certain VO (Authorization)
- Certificates are issued by a Certification Authority (CA)
- Grid Infrastructure
 - Core Services (mandatory per VO)
 - VO Membership Services
 - > Grid Information Services
 - Workload Management System
 - Resources (brought in by partners (*Grid sites*))

Grid Projects



EGEE ...

Objectives:


The EGEE project brings together experts from more than 50 countries with the common aim of building on recent advances in Grid technology and developing a service Grid infrastructure which is available to scientists 24 hours-a-day.

The project provides researchers in academia and business with access to a production level Grid infrastructure, independent of their geographic location. The EGEE project also focuses on attracting a wide range of new users to the Grid.

Because of its needs and its tradition and because of its *simple* use cases, HEP has become the pilot application for the Grid (in EGEE).

... EGEE ...

Andreas Gellrich, DESY

HGF, 15.12.2008

Highlights from EGEE

>200 VOs from several scientific domains

Astronomy & Astrophysics

Civil Protection

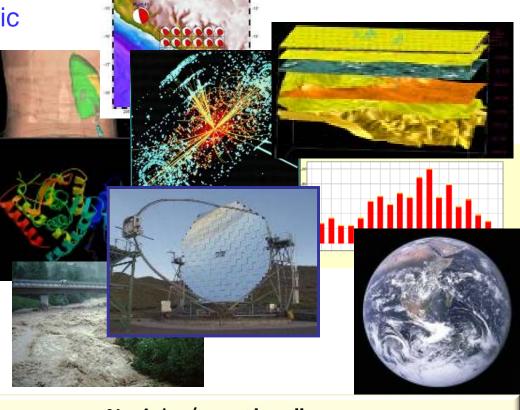
Computational Chemistry

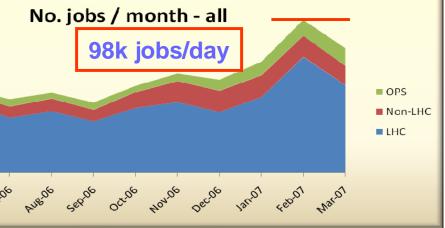
• Comp. Fluid Dynamics

Computer Science/Tools

Condensed Matter Physics

Earth Sciences


Fusion


High Energy Physics

Life Sciences

 Further applications under evaluation 3000000 -2500000 -2000000 -

Applications have moved from testing to routine and daily usage ~80-90% efficiency

DESY

- DESY operates a Grid infrastructure as a partner in the German/Swiss federation (DECH) of the EU project Enabling Grids for E-sciencE (EGEE) deploying the middleware gLite.
- DESY provides Grid services and Grid resources to a number of VOs of various disciplines; ONE Grid infrastructure for ALL VOs
- DESY provides a data repository for ILC testbeam and Monte Carlo data accessible via the Grid
- DESY is part of the World-wide LHC Computing Grid (WLCG) as a Tier-2 centre

LCG

Grid @ DESY

- VOs hosted at DESY:
 - Global: 'hone', 'ilc', 'xfel.eu', 'zeus'
 - Regional: 'calice', 'ghep', 'ildg'
 - Local: 'desy', 'hermes', 'icecube'
- VOs supported at DESY:
 - Global: 'atlas', 'biomed', 'cms', 'lhcb', 'dteam', 'ops'
 - Regional: 'dech', 'xray.vo.egee-eu.org'
- Grid Core Services:
 - VOMS, LFC, BDII, 11 WMS
- Grid Computing Resources at DESY: (CE) [2008-12-15] [growing!]
 - grid-ce3.desy.de

1774 slots @ 325 hosts

- Grid Storage Resources at DESY: (SE)
 - dcache-se-atlas.desy.de

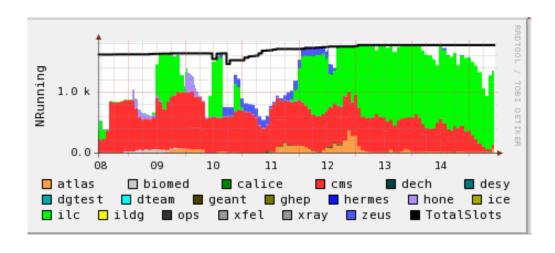
O(100 TB) w/ tape backend

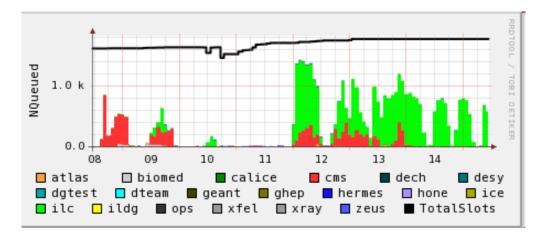
• dcache-se-cms.desy.de

O(100 TB) w/ tape backend

dcache-se-desy.desy.de

O(100 TB) w/ tape backend


... Grid @ DESY ...


- Federating resources among VOs and their groups
 - Jobs are transient
 - Grid resources are procured from various sources
 - DESY
 - DESY / Tier-2
 - D-GRID
 - NAF
 - 1/3 ATLAS, 1/3 CMS, 1/3 others
- Opportunistic usage of resources
 - guaranty optimal usage of cycle
 - handle peak loads
- keep shares on average (fair share)
- limit maximal number of jobs

... Grid @ DESY

Jobs at DESY-HH December 2008

Issues

• The *local* installation is operated in a *global* environment

- There is always day light somewhere on the globe
- Core Grid services are used everywhere (VOMS, LFC)
- One common infrastructure for multiple VOs of multiple disciplines
 - Different groups want different things
 - Computing models differ fundamentally
 - Use and user patterns differ
 - Software requirements differ
- User support is a big issue
 - Not scalable
 - Underestimated
 - Has a huge social factor

