Evolution of interactive Analysis Facilities: From NAF to NAF 2

Andreas Haupt, Yves Kemp, Friederike Nowak
DESY
CHEP 2013, October 14
Outline

National Analysis Facility

➢ General Ideas
➢ Setup
➢ Lessons Learned

National Analysis Facility 2

➢ Requirements
➢ Implementation
➢ Status
➢ Future Plans
NAF: General Ideas

Founding

- Give users of German institutes additional resources for analyses
- “Helmholtz Alliance: Physics at the Terascale” → Collaboration of ~20 institutes
- Initially ATLAS, CMS, LHCb, and ILC groups

Ideas

- Computing size: ~1 average Tier 2
- Focus of the Grid lies in optimized resource usage → well filled queues
- Analysts need their results fast, i.e. “interactively”
- Turn-around times <~ 1h
- Coupling (not integration!) to existing Tier 2 storage

Poster by A. Gellrich
“Job Scheduling in Grid Farms”
A Data Centric View

- Jobs go where the data is
- Grid well constructed for long running jobs
- NAF complementary: designed for short (analysis) jobs
- → NAF has to be placed where the data is!
NAF @ DESY

- Two DESY sites: Zeuthen and Hamburg
- Two multi-VO Tier 2
- > 8 PB (LHC) Storage installed

- CMS data completely in HH
- ATLAS data both in HH and ZN
- For ATLAS, NAF installation on both sites (divided by physics groups)

Diagram:

- Grid HH
 - 57 kHepS06
 - CMS
 - 4 PB
 - ATLAS
 - 2.7 PB

- Grid ZN
 - 23 kHepS06
 - ATLAS
 - 1.3 PB
 - LHCb
 - 0.12 PB

- NAF
 - 52 kHepS06
Thoughts About the Workflow

- Use NAF as one step within workflow
- Grid → NAF → local cluster → laptop
- Workgroup servers: compilers, debuggers, …
- No browser, mail client, ...

- Exchange tool: AFS
- Cross-mount in HH and ZN for ATLAS analyses
- Place NAF within own infrastructure (no site legacies)
NAF (Provider View)

DESY HH Site
- Batch system
- AFS cell
- HPC, GPU, ...
- Application support
- Support team

DESY ZN Site
- Batch system
- AFS cell
- HPC, GPU, ...
- Application support
- Support team

NAF
- Registry
- AFS cell
- Application support
- Support team

➢ Own infrastructure for NAF (island solution)

➢ Own registry, application support, support team, config management, ...
NAF (User View)

- Login via certificate
- SGE batch farm
- Own afs cell
- Parallel Cluster FS as scratch
- Dedicated space within grid storage
- Extra grid resources with high priority for german users
- Placement in HH and ZN
- Well defined network
NAF Usage

- In usage since 2007
- ~500 accounts overall
- ~60 active users currently
- Main users: ATLAS, CMS
- 1/3 DESY Usage, rest by external Institutes
- Substantial amount of storage access through NAF

Lustre Usage by Institutes
1.12.2009-1.04.2013

- DESY: 32%
- Sum external institutes: 68%

CPU Usage by Institutes
1.12.2009-1.04.2013

- DESY: 31%
- Sum external institutes: 69%

CMS dCache access since May

- NAF
- GRID
NAF Usage II

Running Jobs

- > 3k job slots well used
- Up to 120 k waiting jobs at peak times!

Waiting Jobs

- Data analysis with experiment software
- Data analysis with PROOF
- Code development and grid submission
- Private MC simulation
- MC generator tuning
Governance and Support

NAF User Committee (NUC)

- Represents physicists and coordinates resource usage
- Each experiment and DESY IT sends two members
- Ensures close collaboration between experiments and DESY IT

Support

- Delegation Model: DESY IT provides tools, experiments administrate resources (quota, experiment sw, ...)
- Fabric issues are handled by IT admins
- VO specific support provided by groups
Lessons Learned

- Own infrastructure too manpower intensive → need to consolidate
- Grid → NAF → local cluster → laptop: most user stay on NAF
 → graphical tools/interactive access needed
- Since 2007: mobile devices
 → graphical work also in high latency networks
- Low general acceptance of grid certificates/X.509 (Non-HEP products)
Latency problems in analyses using both sites

Latency effects for ROOT file access via WAN with dCache NFS 4.1, lab test

Also bandwidth problem for other groups if such analysis is running
Requirements for NAF 2

Infrastructure
- Embedding in DESY Infrastructure increases efficiency
- Access to other DESY resources (HPC, GPU, …) possible if desired

User Handling
- User registration should work with certificate for convenience
- Access to NAF 2 should work with std. user/password pair

Other
- People working remotely need to work graphically → provide tool to hide latency
- For each VO, provide resources on one site
NAF 2 Changes (Provider View)

Integration of NAF into DESY infrastructure

Additional Resources (HPC, GPU) easily accessible if needed

Only account request left as disjunct entry point
NAF 2 Changes (User View)

New website for account request
Remote Desktop

NAF 2 @ DESY

WGS

AFS

Parallel Cluster FS

Dedicated Space

Grid Storage

Grid Cluster

NAF Grid

DESY Batch

Infrastructure within DESY
Login via ssh
Remote desktop
DESY batch farm
DESY afs cell
Concentration on one site
New website for account request

SSH, gsish
qsub

AFS, kerberos
scp

Grid-ftp, SRM
Status

WGS

➢ ATLAS, CMS, ILC, Belle, Hera Fitter, ZEUS
➢ SL5 or SL6 (depending on VO)
➢ IT Managed

➢ ILC, Belle, Hera Fitter, ZEUS fully on NAF 2
➢ ATLAS, CMS in migration process

Batch

➢ Mixture of SL5 (~1600 cores) and SL6 (~1000 cores)
➢ NAF 1 nodes will eventually join
➢ Share will be ~4000 cores

Other

➢ Website for user registration in place
➢ 600 TB scratch space installed

Talk by C. Jung
“Optimization of data life cycles”
Future Plans

➢ Shut down NAF 1 in 2013 / early 2014
➢ Grid-ftp access to scratch space if desired
➢ Add gsissh access if desired
➢ Provide extensive monitoring of resources
➢ Prepare for new communities
➢ And also for new Requirements (HPC, GPU, ...)

Friederike Nowak | CHEP 2013 | October 14 | Page 18
Summary

➢ To support national analysts, in 2007, the National Analysis Facility has been established

➢ It has proven to be a very important resource complementary to the grid

➢ After more than 5 years, concepts and setup were reviewed, to launch the successor NAF 2

➢ Important changes were

 ▪ Embedding in DESY infrastructure
 ▪ Inclusion of new technologies (NX, ...)
 ▪ Inclusion of new experiments

➢ Currently in the phase of transition from NAF 1 to NAF 2

➢ NAF 2 already successfully in use by several experiments