International Summer School on Grid Computing 2003

Short Summary
by Max Vorobiev

School features
- ~ 85 hours of instructions
- Information from “first hands”
 - renowned Grid experts, ideologists of the Grid, middleware development teams representatives...
 - Carl Kesselman (Univ. of S. California; Globus project)
 - Miron Livny (Univ. of Wisconsin; Condor project leader)
 - ...many others
- Sunshine, sea, lot of fun...

Main Topics
- Toolkits, middleware
 - Globus toolkit 2
 - Condor G
 - Globus Toolkit 3
 - European Data Grid (most of the time)
 - Unicore

Main Topics (continued)
- Technologies, concepts
 - OGSA-DAI (DataBases & the Grid)
 - VOMS (System for authorization management inside virtual organizations)
 - GLUE Information model
- General information...
 - EDG Applications
 - EDG Future direction
 - EU Grid projects
 - Case Study: CMS Particle Production
Main Topics
(continued)

- General topics (continued)
 - IBM Industrial Grid Applications
 - Grid.it Italian High-performance Grid Project
 - Building Grid Portals
 - Biomedical Applications
 - Virtual Observatory (astronomy)

Practice

- Lab Exercises:
 - EDG 1.4, 2.0
 - GT3
 - CondorG & DAGman
 - UNICORE
 - OGSA-DAI
- Nice tutorials:

A very brief overview
of some technologies mentioned above that may be quite new to us...

- Details that might be interesting:
 - UNICORE
 - GT3

Unicore
yet another approach

- Uniform Interface to Computing Resources
- provides a science and engineering GRID combining resources of supercomputer centers and making them available through the Internet.
- “Seamless” computing (platform independent)
- Jobs
 - prepared/modified through the GUI (e.g. Pallas UNICOREPro; nice but commercial)
 - contain a number of interdependent tasks
 - currently, execution of scripts, compile, link, execute tasks and data transfer directives are supported
 - tasks are represented in abstract terms and resources – in abstract units. UNICORE servers translate them into platform-specific.
Unicore (continued)

- Abstract Job Object (collection of classes representing Grid functions; encoded in Java)
- Target system and requirements can be specified for each job
- Security
 - certificate-based (interoperable with Globus)
 - stronger trust model

Some important functions:
- local, remote and nested task graphs
- flow control based on task status, time events and file-state events
- hard/soft fail recovery
- RB:
 - Multi-site resource check prior to submit
 - estimate of time until execution
 - ticket generation and checking
 - dynamic brokering at execution time

More info at www.unicore.org

GT3

- Evolution of Globus toolkit
 - Standard protocols -> Services
 - Open Grid Services Architecture (OGSA)
 - Service orientation to virtualize resources and unify resources/services/information (based on Web-services)
 - Standard interfaces & behaviors for distributed system management: the Grid service
 - Open Grid Services Infrastructure (OGSI)
 - Service (component) is implemented as Java-class. Theres’ API.
 - Exploits existing WS properties
 - Enhancements to WS:
 - state management, event notification, referenceable handles, lifecycle management, service data extension.

GT2 -> GT3

- Security: Adapting X.509 certs to integrate with emerging WS standards
- GRIP/LDAP: Abstractions integrated into OGSI as serviceData
- GRAM: ManagedJobFactory and related service definitions
- GridFTP: Unchanged in 3.0, but will evolve into OGSI-compliant service in 2004
Useful resources

- Official page:
 http://www.dma.unina.it/~murl/SummerSchool/
- EDG Tutorials (handouts, exercise)
- Page by Oxford guys:
 http://ijstokes.paunix.org/ggf/bin/view
 - "Compiled" set of school slides and documents (over 1600 pages, 39 megs!)
 - Photos and other school-related stuff
 - (currently corrupted?)